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Abstract 

In this paper we describe restartable atomic sequences, an optimistic 
mechanism for implementing simple atomic operations (such as 
Test-and-Set) on a uniprocessor. A thread that is suspended within a 
restartable atomic sequence is resumed by the operating system at the 
beginning of the sequence, rather than at the point of suspension. This 
guarantees that the thread eventually executes the sequence atomically. A 
restartable atomic sequence has significantly less overhead than other 
software-based synchronization mechanisms, such as kernel emulation or 
software reservation. Consequently, it is an attractive alternative for use 
on uniprocessors that do not support atomic operations. Even on 
processors that do support atomic operations in hardware, restartable 
atomic sequences can have lower overhead. 

We describe different implementations of restartable atomic sequences 
for the Mach 3.0 and Taos operating systems. These systems' thread 
management packages rely on atomic operations to implement higher- 
level mutual exclusion facilities. We show that improving the 
perfonnance of low-level atomic operations, and therefore mutual 
exclusion mechanisms, improves application performance. 
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Abstract 
In this paper we describe restartable atomic sequences, 
an optimistic mechanism for implementing simple 
atomic operations (such as Test-And-Set) on a unipro- 
cessor. A thread that .s suspended within a restartable 
atomic sequence is resumed by the operating sys- 
tem at the beginning of the sequence, rather than 
at the point of suspension. This guarantees that the 
thread eventually executes the sequence atomically. A 
restartable atomic sequence has significantly less over- 
head than other software-based synchronization mech- 
anisms, such as kernel emulation or software reserva- 
tion. Consequently, it is an attractive alternative for 
use on uniprocessors that do not support atomic op- 
erations. Even on processors that do support atomic 
operations in hardware, restartable atomic sequences 
can have lower overhead. 

We describe different implementations of restartable 
atomic sequences for the Mach 3.0 and Taos operating 
systems. These systems' thread management packages 
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rely on atomic operations to implement higher-level 
mutual exclusion facilities. We show that improving 
the performance of low-level atomic operations, and 
therefore mutual exclusion mechanisms, improves ap- 
plication performance. 

1    Introduction 
In this paper we describe restartable atomic sequences, 
an optimistic mechanism for implementing atomic op- 
erations on a uniprocessor. Our approach assumes that 
short, atomic sequences are rarely interrupted. If a 
thread is interrupted during an atomic sequence, we 
rely on a recovery mechanism provided by the ker- 
nel that resumes the thread at the beginning of the 
sequence. We have implemented restartable atomic 
sequences in the Mach 3.0 [Accetta et al. 86] and 
Taos [Thacker et al. 88] operating systems, using a dif- 
ferent method in each. We show that restartable atomic 
sequences are significantly more efficient than other 
software techniques. We have measured performance 
improvements of up to 50% for some applications on the 
MIPS R3000-based [Kane 87] DECstation 5000/200, 
which does not have hardware support for atomic op- 
erations. In addition, we show that restartable atomic 
sequences outperform hardware mechanisms on proces- 
sors that do provide explicit support for atomic opera- 
tions. 

1.1    Motivation 

Multithreaded programs use mutual exclusion to guar- 
antee consistency of shared data structures. Mutual ex- 
clusion mechanisms such as P, ^[Dijkstra 68a] and ac- 
quire.muiex, release.mulex [Birreil 91] are implemented 
using lower-level operations such as Test-And-Set that 
grant one of several threads mutually exclusive access 
to some data structure. Even on a uniprocessor, mutual 



exclusion is necessary to protect shared data against 
an interleaved thread schedule. Interleaving can oc- 
cur when a thread is suspended (due to a synchronous 
fault or an asynchronous preemption), or when a thread 
blocks (due to the thread voluntarily relinquishing the 
processor). 

Efficient mutual exclusion mechanisms are becoming 
increasingly important on uniprocessors for two rea- 
sons. First, modern applications use multiple threads 
as a program structuring device, as a mechanism for 
portability to multiprocessors, and as a way to man- 
age I/O and server concurrency even when no true 
CPU parallelism is available. Second, many operating 
systems today are built on top of a microkernel that 
supports relatively few services; for example thread 
scheduling, virtual memory and interprocess commu- 
nication [Mullender et al. 90, Cheriton 88, Rozier et al. 
88, Accetta et al. 86, Thacker et rJ. 88]. Other services 
such as the file system and networking are implemented 
as multithreaded user-level applications. The micro- 
kernel approach exposes the performance of a system's 
mutual exclusion primitives; even single threaded pro- 
grams rely on basic operating system services that are 
implemented outside the kernel using multiple threads. 
The performance of all applications is therefore ulti- 
mately influenced by the performance of the underlying 
mutual exclusion mechanisms. 

The mechanisms that have been used to implement 
atomic operations on a uniprocessor (i.e., those de- 
scribed in every undergraduate operating systems text- 
book) can be characterized aa pessimistic. That is, 
their design assumes that atomicity may be violated 
at any moment (e.g., with an interrupt), and therefore 
guards against this potential violation every time the 
atomic operation is executed. This approach, though, 
can incur a high overhead that affects the performance 
of applications relying on mutual exclusion, either di- 
rectly or indirectly. 

In contrast, the optimistic mechanism described in 
this paper assumes thaf atomic sequences are rarely 
interrupted, and adopts an inexpensive solution for this 
assumed common case. We show that this assumption 
is both accurate, and effective at reducing the overhead 
of mutual exclusion. 

1.2    The rest of this paper 

In the next section we describe restartable atomic se- 
quences after reviewing several pessimistic techniques 
for ensuring mutual exclusion on a uniprocessor. In 
Section 3 we discuss implementations of restartable 
atomic sequences for the Mach and Taos operating sys- 
tems. In Section 4 we discuss some of the kernel de- 
sign issues that arise when implementing restartable 
atomic sequences. In Section 5 we show the perfor- 
mance impact of using restartable atomic sequences in 
the Mrch operating system. In Section 6 we show that 
restartable atomic sequences have less overhead than 
equivalent hardware mechanisms on several processor 

architectures. In Section 7 we dLcuss related work. In 
Section 8 we present our conclusions. 

2    Implementing mutual exclu- 
sion on a uniprocessor 

This section describes four techniques for implementing 
atomic primitives suitable for use by mutual elusion 
mechanisms on a uniprocessor. We concen. tie on the 
specific atomic primitive Test-And-Set, although other 
primitives, such as Fetch-And-Add, Load-Lmkcd/Store- 
Conditional, and Memory-Register-Exchange could be 
similarly constructed. Each of these primitives per- 
forms an atomic read-modify-write of a single mem- 
ory location. Three of the techniques, memory inter- 
locked instructions, software reservation and kernel em- 
ulation, are pessimistic. The fourth, restartable atomic 
sequences, is based on the optimistic approach. 

2.1 Memory-interlocked instructions 

Memory-interlocked instructions (or instruction se- 
quences) require special hardware support from the 
processor and bus to ensure that a given memory loca- 
tion can be read, modified and written without inter- 
ruption. Memory-interlocked instructions are primarily 
intended to support multiprocessing, but can be used 
on uniprocessor systems as well. Unfortunately, not 
all processors support memory-interlocked instructions, 
and many that do, do so reluctantly; i.e., the cycle time 
for an interlocked access is several times greater than 
that for a non-interlocked access. The reasons for the 
higher cost are increased complexity [Intel860 89], an 
overly rich set of atomic operations [Leonard 87, In- 
tel386 90], support for atomic updates on arbitrary bit 
boundaries [Leonard 87], and the fact that atomic op- 
erations may bypass the on-chip cache [Motorola 88100 
88]. A good survey of memory-interlocked instructions 
and their implementations can be found in [Glew &c 
Hwu 91]. 

2.2 Software reservation 

Atomic operations can also be constructed using Soft- 
ware reservation algorithms, such as Dekker's [Djkstra 
68b], Peterson's [Peterson 81] or Lamport's [Lamport 
87]. Roughly speaking, with software reservation algo- 
rithms, a thread must register its intent to perform an 
atomic operation and then wait until no other thread 
has registered a similar intent before proceeding. Wc 
use Lamport's fast mutual exclusion algorithm to eval- 
uate software reservation schemes since it has been 
proven cor.ect and shown to be optimal. If one is will- 
ing lo pui an upper bound on ihe duration of the crit- 
ical "'"tuen, then it is possible to nnpiement multipro- 
cessor mutual exclusion vith few« instructions than 
required by Lamport's algorithm.   Such a limitation, 



though, is generally not feasible on a multiprocessor, 
and would be nearly impossible on a uniprocessor. 

In Lamport's algorithm, shown in Figure 1, each 
thread has a unique identifier t which is used to place 
reservations into the variable x, and to indicate own- 
ership of the lock via the variable y. In the normal 
case (no contention, no collision), Lamport's algorithm 
requires two loads and five stores, executing in order 
the lines [1,2,3,9,10,19,21,22]. If a thread reaches line 
3, though, and finds that the lock is held by another 
thread, there is contention, and the thread must wait 
until the lock is released. The array 6 is used to resolve 
collisions, which occur whenever two or more threads 
find that the lock is free at line 3 and proceed to line 9 
simultaneously (or through an interleaved schedule on 
a uniprocessor). A collision by n threads will be de- 
tected at line 10 by n - 1 of them; those n - 1 will enter 
the loop at line 12 and wait until the collisions have 
settled out (lines 12 through 15). The await used at 
lines 5, 12 and 14 is necessary when there is contention 
or collision, and can be implemented on a uniprocessor 
by having the awaiting thread yield its processor to the 
scheduler. 

function Meta-Ato«ic-Te8t-And-Set(var p:   integer) 
:integer; 

var result: integer; 
begin 

[ lines 1-18 fron Lamport's algorithm ] 
if  (p - 0)    then 

result :■ Oj 
P - i: 

else 
result :■ 1; 

end; 
[ lines 21-22 from Lamport's algorithm ] 

return result; 
end Meta-Atomic-Test-And-Set; 

procedure AtonicClear(var p: integer) 
begin 

p :- 0; 
end AtomicClear; 

Figure 2: Bundled Tesi-And-Set using Lamport's algo- 
rithm. 

start! 
1 b[i] :» true; 
2 x :- i; 
3 if y <> 0 then { Contention } 
4 b[i] :- false; 
5 await (y ■ 0); 
6 goto start; 

and; 

9 y :- i; 
iO if x <> i then { Collision } 
11 b[i] :- false; 
12 for j :» 1 to N await (b[j] » false); 
13 if y <> i then 
14 await (y ■ 0) 
15 goto start; 
16 end; 
17 end; 
18 
19 CRITICAL SECTION 
20 
21 y :- 0; 
22 b[i] := false: 

Figure 1: Lamport's fast mutual exclusion algorithm. 

Although reservation-based algorithms such as Lam- 
port's are correct in principle, they are in practice un- 
wieldy, having storage requirements that are 0{n x I), 
where n is the maximum number of threads that may 
be simultaneously active, and / is the maximum num- 
ber of synchronization objects. 

The space requirement can be reduced to O(n) with 
a single "meta-atomic object" which is used to control 
access to all "regular atomic objects." In this case, 
the critical section at line 19 in Figure 1 becomes a 

code sequence to access the "regular atomic object." 
For example, we can bundle the reservation algorithm 
inside a Test-And-Set procedure (see Figure 2). 

Even though bundling reduces the space requirement 
for an atomic Test-And-Set variable to one bit (space 
for the meta variables x, y, and b can be counted as 
constant system overhead), it increases the number of 
memory accesses to enter and exit a critical section 
to at least three loads and seven stores. Additionally, 
bundling serializes all atomic operations, even those 
for unrelated synchronization objects. On a uniproces- 
sor, for example, a thread preempted during the func- 
tion Meta-Atomic-Test-And-Set would prevent other 
threads from executing any atomic operation. 

2.3    Kernel emulation 

Memory-interlocked instructions and software reserva- 
tion protocols work on both uniprocessors and multi- 
processors. A strictly uniprocessor solution has the ker- 
nel export its ability to perform atomic operations to 
applications by means of a system call that does an 
atomic read-modify-write on a memory location in the 
caller's address space. In the kernel, processor inter- 
rupts are uisabled during the execution of the atomic 
operation. 

Although kernel emulation requires no special hard- 
ware, its runtime cost is high. The kernel must be 
invoked on every synchronization operation, requiring 
that a trap be fielded and dispatched, state saved and 
restored, and arguments checked. On the MIPS R3000, 
for example, building a Test-And-Set with kernel emu- 
lation takes about 100 instructions. 



function Test-And-SetCvar p:  integer): integer; 
var result:   integer; 
begin 

1 result !■ 1; 
2 BEGIN RESTARTABLE ATONIC SEQUENCE 
3 if p « 1 then 
4 result :- Oj 
5 els« 
6 p :- 1; 
7 end; 
8 END RESTARTABLE ATONIC SEQUENCE 
9 return result; 

end Test-And-Set; 

Figure 3:   Generic  Test-And-Set using a restartable 
atomic sequence. 

Implementing 
atomic sequences 

restartable 

Restartable atomic sequences require kernel support to 
ensure that a suspended thread is resumed at the be- 
ginning of the sequence. This section describes two 
strategies for implementing that kernel support. The 
first strategy, used by the Mach 3.0 kernel, places 
a restartable atomic sequence at a designated code 
range within a program. The second strategy, used 
by the Taos kernel, constructs restartable atomic se- 
quences out of unique code fragments against which a 
suspended thread's current instruction stream is com- 
pared. Both strategies have been implemented in ver- 
sions of the operating systems running on the MIPS 
R3000-based DECstation 5000/200. 

2.4    Restartable atomic sequences 

The three mechanisms described so far are pessimistic. 
A memory-interlocked instruction implicitly delays in- 
terrupts until the instruction completes; a software 
reservation algorithm explicitly guards against arbi- 
trary interleaving; kernel emulation explicitly disables 
interrupts during operations that must execute atomi- 
cally. 

On a uniprocessor, an atomic read-modify-write op- 
eration can be performed optimistically. Instead of us- 
ing a mechanism that guards against interrupts, we can 
instead recognize when an interrupt occurs and recover. 
For any read-modify-write sequence, the recovery pro- 
cess :8 straightforward: restart the sequence. In this 
way, when the sequence eventually completes, it will 
have completed without interruption, i.e., atomically. 

An atomic Test-And-Set operation is shown in Fig- 
ure 3. As long as statements 3 through 7 execute with- 
out interruption on a uniprocessor, this code will atom- 
ically read and write the variable p. If an interrupt oc- 
curs that would allow another thread to possibly mod- 
ify the variable p, then the interrupted thread must 
resume execution at line 3 when it is next scheduled. 
The corresponding clear operation can store a zero into 
p as long as single-word memory accesses execute atom- 
ically. 

Restartable atomic sequences are attractive because 
they do not not require hardware support, have a short 
code path with one load and one store per atomic read- 
modify-write (in the common case of no interruptions), 
and do not involve the kernel on every atomic opera- 
tion. Only when an atomic instruction sequence might 
not have executed atomically is it necessary to perform 
a recovery action to ensure atomicity. In the next sec- 
tion we describe two recovery strategies. 

3.1    Explicit registration in Mach 

The Mach operating system implements a strategy 
based on explicit registration. The kernel keeps track 
of each address space's restartable atomic sequence. If 
a thread is suspended within that sequence, it is re- 
sumed at the beginning. An application registers the 
starting address and length of the sequence with the 
kernel. The registration is done automatically during 
program initialization by C-Threads [Cooper & Draves 
88], Mach's thread management package. 

An address space may register only one restartable 
atomic sequence at a time. This restriction simplifies 
the kernel's task of determining if a suspended thread 
was executing within a restartable sequence. When 
the thread management system attempts to register 
a restartable atomic sequence with a kernel that does 
not support such sequences, the registration fails. In 
response to the failure, the thread management sys- 
tem overwrites the restartable atomic sequence with 
code that uses a conventionarmechanism. Overwrit- 
ing ensures binary portability between uniprocessors 
and multiprocessors, and binary compatibility with 
older kernels that do not support restartable atomic 
sequences. 

' A registered Test-And-Set function can be imple- 
mented with a single four-word (and four cycle) se- 
quence on a load/store RISC architecture. For exam- 
ple, the assembly code for this function on a MIPS 
R3000 is shown in Figure 4. Line 1 loads the current 
value of the Test-And-Set location, passed in register 
aO, into the return value register, vO. Line 2 loads a 
temporary register with the value 1. Line 3 returns 
control back to the caller. Line 4, which executes in 
the branch delay slot following the return, stores a 1 
into the Test-And-Set location. Lines 1-4 form the 
restartable atomic sequence: when the store finally oc- 
curs at the end of line 4, no other thread will have 
executed since the thread's most recent load at line 1. 



i Test-And-Set procedure. 
Test-And-Set: 
1 lv vO, (aO) fvO • contents of aO 
2 li to, 1    tteaporary to gets 1 
3 j  ra      treturn to caller, result in vO 
4 sa to, (aO) «store 1 in Test-And-Set 

«location 

Figure 4: Restartable Test-And-Set procedure using ex- 
plicit registration in Mach 3.0. 

Costs of explicit registration 

There are two runtime costs associated with explicit 
registration. Because the kernel identifies restartable 
atomic sequences by a single PC range per address 
space, they cannot be inlined. The inability to inline 
slightly increases the overhead of atomic operations be- 
cause of the cost of subroutine linkage. 

The second cost comes from having to check the re- 
turn PC whenever a thread is suspended. Although 
this test adds a few tens of cycles to the kernel's thread 
suspension path (which is already several hundred cy- 
cles long), thread suspensions occur far less often than 
atomic operations, making the additional scheduling 
overhead worthwhile. 

3.2    Designated sequences in Taos 

Taos uses designated code sequences to recognize when 
a thread has been suspended within an atomic se- 
quence. The kernel compares the instruction stream 
of a suspended thread against a designated sequence. 
The comparison allows restartable atomic sequences to 
occur anywhere in a program, enabling inlinirt and 
eliminating the branch overhead of explicit registration. 

The kernel's comparison must recognize every inter- 
rupted sequence and reject any other similar looking 
sequence since mistakenly changing the PC in such a 
situation could cause code to malfunction. Taos uses 
a two-stage check to unambiguously recognize atomic 
sequences. 

The first stage is a fast test which rejects most in- 
terrupted code sequences that are not restartable. The 
opcode of the suspended instruction is used as an in- 
dex into a hash table containing instructions eligible to 
appear in a restartable atomic sequence. If the opcode 
matches the contents of the indexed entry, the test pro- 
ceeds to the second stage. The first check is quite fast, 
yet succeeds in rejecting a large majority of the non- 
atomic cases and none of the atomic ones. The few that 
pass this check, comprising all of the suspended atomic 
sequences, plus a much larger number of false alarms, 
move on to the second stage of the check. 

The second stage uses another table, again indexed 
by opcode, to determine the expected offset from the 
suspended instruction to a "landmark" no-op. The 
landmark no-op is never emitted by the compiler un- 

der normal circumstances, but is present within every 
restartable atomic sequence. On the R3000, the land- 
mark no-op is a non-destructive register move which 
fills an otherwise useless branch delay slot. If the sec- 
ond stage finds the landmark in the expected position, 
it recognizes the sequence as atomic and restarts it. 
Otherwise, the sequence is rejected as a false alarm. 

The designated sequence for acquiring a mutex is 
shown in Figure 5. The sequence is optimistic in two 
distinct senses: it assumes both that it will not be in- 
terrupted, and that it will find the mutex unlocked. 
Both assumptions model the frequent case, but either 
or both can fail independently. The sequence is es- 
sentially a Test-And-Set of an entire word, where the 
unlocked value of the mutex is 0, and the locked-but- 
no-waiters value is 0x80000000. Typically, the sequence 
finds that the mutex has the former value and atomi- 
cally sets it to the latter. The infrequent case is handled 
with an out-of-line kernel call via SlowAcquire. The 
sequence for mutex release (Test-And-Clear) is similar. 

1 1B  VO, (aO)      «get value of mutex 
2 lui tO, 8000H     »temporary t0=0x80000000 
3 bne vO, SlovAcquire «branch if not common case 
4 no-op «special landmark value 
5 sa  tO, (aO)      «store locked value 

Figure 5: A restartable atomic sequence for mutex ac- 
quisition using an inlined designated sequence. 

Costs of designated sequences 

Designated sequences have several costs. There is the 
measurable cost of the two-stage check on every thread 
switch. The check is currently implemented in Mod- 
ula2+, the language in which the operating system is 
written [Rovner et al. 85]. As with Mach's explicit reg- 
istration, the check adds a few tens of instructions to 
the kernel's context switch path (counting instructions 
in the generated code shows that the check adds about 
2 /isecs on a MIPS R3000 in the common case). 

Unlike explicit registration, which uses only one se- 
quence that can be overwritten at runtime if restartable 
atomic sequences are not supported on a given system, 
designated sequences are not portable between unipro- 
cessors and multiprocessors. The compiler must gener- 
ate a different code sequence for each. 

More generally, the use of a designated sequence 
requires a strong alliance between the compiler and 
the operating system, since changes in the way that 
one handles atomic operations must be reflected in the 
other. The global design properties of the Taos oper- 
ating system make this linkage feasible, however. The 
crucial property of Taos is that both the kernel and 
its multithreaded clients are written in Modula-2-|-. In 
this context, the kernel and the compiler can cooperate 
closely to support fast mutual exclusion using desig- 
nated inlined sequences. In contrast, for Mach, which is 



not intended to be used with any one language and any 
one compiler, such a close alliance between the compiler 
and the operating system kernel is not feasible. 

4    Kernel design considerations 

Section 3 described two kernel techniques that support 
fast mutual exclusion with restartable atomic sequence. 
Tbs implications of these techniques for the inner work- 
ings of the kernel depend both on the exact technique 
chosen (explicit registration, or designated sequences) 
and on the design details of the specific kernel involved. 
In this section we discuss some of these implications. 

as those that manipulate wait-free data structures [Her- 
lihy 91], as well as the more conventional Tesi-And-Set. 

The user-level approach is not without problems, 
however. TYansferring first to a fixed instruction se- 
quence, and then to the suspended instruction involves 
more complexity and overhead than the simple check 
made by the kernel in either of the other two strate- 
gies. There is a level of control indirection requiring 
that the real return address be saved and restored on 
the thread's user-level stack at each suspension. Be- 
cause of these problems, and because there is little mo- 
tivation to create a clean policy/mechanism separation 
when there is only one policy, neither Taos nor Mach 
provide for user-level detection.1 

4.1    Placement of the PC check 

The most obvious question about kernel structure is: 
when should the kernel check/adjust the PC of a sus- 
pended thread? The two points at which the thread can 
be checked are when it is first suspended, and when it 
is about to be resumed. One could consider intermedi- 
ate points, but they are less natural than either point 
where the kernel already has the thread in hand. 

When using designated sequences, checking the PC 
can cause a page fault since it involves reading arbitrary 
user memory. If the kernel path leading to suspension 
is restricted in its ability to incur additional faults, as 
it is in Taos and many other systems, early checking 
of the PC with designated sequences can be problem- 
atic. Checking the PC late solves this problem, since 
there are generally fewer restrictions on kernel excep- 
tions when coming out of a context switch. 

In Mach, the PC is checked when the thread is sus- 
pended rather than when it returns to user level. Since 
only the PC, but not its contents, are inspected, there 
is no concern about touching user memory at inoppor- 
tune times. The check is done early because the return 
PC and reason for entry into the kernel are conveniently 
available at that point. 

Detection at user level 

Explicit registration and designated sequences place 
with the kerne! the responsibility for detecting and cor- 
recting atomicity violations. An alternative approach 
places that responsibility with the application itself: 
whenever a suspended thread is resumed by the kernel, 
it returns to a fixed user-level sequence that determines 
if the thread was suspended within a restartable atomic 
sequence. If co, the user-level recovery code branches 
to the beginning of the sequence, otherwise it branches 
to the suspended instruction. 

User-level detection is attractive because the kernel 
provides only the mechanism to ensure atomicity. The 
policy lies with the application. Since the kernel is not 
involved in either detection or correction, those pro- 
cesses can be made as rich as necessary to satisfy the 
atomicity constraints of any instruction sequence, such 

4.2    Mutual exclusion in the kernel 
The kernel is itself a client of thread management facil- 
ities in both Mach and Taos. It is tempting to regard 
the kernel's ability to disable interrupts as a sweeping 
solution to the mutual exclusion problem on a unipro- 
cessor. Mach implicitly adopts this approach as the ker- 
nel is non-preemptive, but is compiled for uniprocessors 
with all low-level synchronization operations removed. 
The Taos kernel, however, is preemptive, and uses des- 
ignated sequences just as applications do. There are 
two reasons for this. The first is a minor performance 
gain, since explicit disabling and reenabling of inter- 
rupts would more than double the cost of synchroniza- 
tion operations. The second reason is a desire to use 
the same Modula-2-|- compiler for all code, whether it 
be user code or kernel code. 

The use of restartable atomic sequences in both user 
programs and the kernel raises the question of system 
structuring due to potential recursion. Two events, a 
page fault or a thread preemption, can trigger a thread 
switch in the middle of a restartable atomic sequence. 
Since the sequence may be in either user or kernel code, 
there are then four events that must be considered in 
the light of recursion: user page fault, user preemp- 
tion, kernel page fault, and kernel preemption. The 
kernel uses mutexes while handling these events, so it 
is important to ensure that recursion does not lead to 
deadlock. For example, a thread could incur a user 
page fault, be preempted while handling it in the ker- 
nel, and upon resuming from the preemption, incur a 
second page fault when trying to do its PC check. If 
the preemption happened while holding a lock in the 
virtual memory system, the recursion could cause the 
thread to deadlock with itself. 

The problem here is that careless ordering of the 
PC check could lead to mutual recursion between the 
thread scheduler and the virtual memory system. Such 

1 At CMU, we rely on user-level restart in a preemptive corou- 
tine package for Unix systems that is used in teaching an under- 
graduate operating systems course. We examine the interrupted 
PC within the Unix signal handler, and roll it back if necessary. 
With this, we avoid disabling and enabling Unix signals during 
every synchronization ooeration. 



problems are avoided in Taos because the system is 
structured to impose a strict ordering on the four events 
listed above. The handling of any event can cause only 
lower-level events. A ■. page fault can incur kernel 
page faults and kerne: mptions, but a kernel pre- 
emption (including tht check at restart) can not 
incur kernel page faults, resuming from a user pre- 
emption, by contrast, is allowed to incur page faults. 
By consistently ordering the PC checks, Taos is able 
to use restartable atomic sequences at all levels of the 
system without risk of deadlock or endless recursion. 

5 The performance of three 
software techniques for mu- 
tual exclusion 

In this section we compare tie performance of 
restartable atomic sequences, ker.el emulation and 
software reservation on a RISC-based DECstation 
5000/200 running the Mach 3.0 kernel (version MK42) 
and CMU's Unix server (version UX23) [Golub et al. 
90]. The DECstation 5000/200 has a 25 Mhz MIPS 
R3000 processor which does not support atomic read- 
modify-write memory accesses in hardware. 

We discuss performance at three levels. First, we 
examine the basic overhead of the various mechanisms. 
Next, we examine their effect on the performance of 
common thread management operations. Finally, we 
take a system-wide perspective and look at the effect 
that mutual exclusion overhead has on the performance 
of several applications. In brief, we show that: 

• Using restartable atomic sequences instead of 
kernel-emulation, the performance of multi- 
threaded applications can be improved substan- 
tially. 

• Even single threaded applications, because they 
deal with multithreaded operating system servers, 
can benefit indirectly from inexpensive mutual ex- 
clusion. 

• Thread suspensions occur much less frequently 
than atomic operations, justifying the small 
amount of extra .work done during thread switch 
in order to improve the performance of atomic op- 
erations. 

• Restartable atomic sequences are almost never in- 
terrupted, validating the optimistic approach. 

Although we have not collected detailed performance 
information in Taos, we believe that the results would 
be similar. 

5.1    Microbenchmarks 

We compare the performance of the three software- 
based mutual exclusion mechanisms with a test that 

enters a critical section using a Test-And-Set lock, in- 
crements a counter, and leaves the critical section by 
clearing the Test-And-Set lock. The test uses only one 
thread, so the Test-And-Set always succeeds. Conse- 
quently, we are not measuring the performance of the 
thread management system itself (context switching, 
scheduling, etc.), but rather that of the basic proces- 
sor architecture, memory system and mutual exclusion 
mechanism. The update to the counter is included so 
as to model a real critical section: interactions between 
the atomic operation, the code in the critical section, 
and the memory system should be considered when 
evaluating a mutual exclusion mechanism. For exam- 
ple, a scheme requiring several writes will not work well 
on a memory system with a write-through cache and a 
shallow write-buffer [Bershad et al. 92]. 

The elapsed times to execute the various software- 
based mutual exclusion algorithms are shown in Ta- 
ble 1. The values in the table were determined by ex- 
ecuting the test in a tight loop 1,000,000 times, com- 
puting the average elapsed time of each pass through 
the loop, and subtracting off the loop overhead. There 
was only negligible variation in times over several runs 
of the benchmarks on an unloaded system. 

Software Mechanism Time 
(/isecs) 

Restartable Atomic Sequences (branch) .64 
Restartable Atomic Sequences (inline) .51 
Kernel Emulation 4.15 
Software-reservation (a) 1.51 
Software-reservation (b) 1.16 

Table 1: Microbenchmark results for the DECstation 
5000/200. 

Restartable atomic sequences were measured with 
branches to an explicitly registered sequence, and also 
with inlined code. The performance difference between 
the two approaches is due to the subroutine linkage 
overhead on the MIPS. Kernel emulation and both 
reservation schemes use out-of-line calls to implement 
the atomic operations. For these mechanisms, the over- 
head is sufficiently high that there is little to be gained 
by inlining. Software-reservation protocol (a) is an im- 
plementation of Lamport's fast mutual exclusion al- 
gorithm in which each lock is represented by a data 
structure containing an owner and a reservation field 
(one word each), and an array of booleans indexed by 
a thread identifier. It is the most direct implementation 
of the algorithm, but suffers from the high storage re- 
quirements described in Section 2.2. Protocol (b) uses 
Lamport's algorithm to implement the "meta" mutual 
exclusion function shown in Figure 2. Protocol (b), de- 
spite an increase in the number of memory accesses over 
Protocol (a), executes more quickly on the DECstation 
5000/200 because of the cost of having to compute a 
thread's unique identifier and the address of its "busy" 
bit. With protocol (a), these must be computed on en- 
try anrfexit to a critical section, whereas with protocol 



(b), they need only be computed on entry. A dedi- 
cated per-thread hardware register would reverse this 
disparity. 

The table shows that kernel emulation is by far the 
most expensive approach; the trap and exception dis- 
patch in the kernel are the main sources of overhead. 
Both software reservations schemes are faster than ker- 
nel emulation, but much slower than restartable atomic 
sequences due to the number of instructions and mem- 
ory accesses required. Despite their better perfor- 
mance, both reservation strategies have practical prob- 
lems that make them difficult to use (see Section 2.2). 
Consequently, in the rest of this section, we restrict our 
comparisons to systems using only restartable atomic 
sequences and kernel emulation. 

5.2    Thread management overhead 
Mach's user-level thread management system, C- 
Threads, like other thread management packages [An- 
derson et al. 89, Bershad et al 88, Weiser et al. 89], 
relies heavily on simple atomic operations to implement 
higher level facilities such as threads, locks and condi- 
tion variables. We looked at several benchmarks to 
understand the influence that atomic operations have 
on the performance of these higher level facilities using 
two different versions of C-Threads. One version re- 
lies on kernel emulation for synchronization. The other 
uses restartable atomic sequences. The benchmarks, 
which contain the kinds of operations typically found 
in multithreaded programs, are: 

• Spinlock. One thread repeatedly acquires and re- 
leases a spinlock. The spinlock is implemented 
with a Test-And-Set sequence. 

• Mutexlock. One thread repeatedly acquires and 
releases a relinquishing mutex. Unlike a spinlock, 
if a thread tries to acquire a held mutex, it relin- 
quishes the processor. The mutex is implemented 
using a spinlock and a queue of Waiting threads. 

• Forktest. Threads are recursively forked in suc- 
cession; i.e., thread 1 forks thread 2 which forks 
thread 3, etc.. After forking, a thread immediately 
terminates. 

• Pingpong. Two threads "pingpong" off one an- 
other in a tight loop, using a mutex and condition 
variable to execute alternately. 

The performance of these benchmarks running on a 
DECstätion 5000/200 is shown in Table 2. Each entry 
in the table represents the elapsed time per operation 
(i.e, one spinlock acquire and release, one mutex lock 
and unlock, one fork and exit, one ping and pong). The 
table shows that the performance of thread manage- 
ment operations depends upon the performance of the 
underlying synchronization mechanism. When using 
kernel emulation for Test-And-Set, thread management 

functions spend the majority of their time in the ker- 
nel executing synchronization code. With restartable 
atomic sequences, synchronization overhead becomes 
negligible. Even PingPong, with its profligate synchro- 
nization (26 Test-And-Seis per cycle), spends less than 
10% of its time synchronizing when using restartable 
atomic sequences. 

Benchmark Emulation R.A.S. 
(/isecs) (/isecs) 

Spinlock 4.3 .58 
MutexLock 4.6 .91 
ForkTest 43.7 23.8 
PingPong 230.8 115.2 

Table 2: The effect of synchronization on thread man- 
agement overhead under Mach 3.0 on a DECstation 
5000/200. 

5.3    Application performance 

The microbenchmarks and thread management bench- 
marks indicate that restartable atomic sequences can 
have a large effect on individual operations. Ultimately, 
though, we are concerned with performance system- 
wide. In this subsection we examine the effect that 
restartable atomic sequences have on the performance 
of several applications running on Mach 3.0. The ap- 
plications are: 

• text-format. Format a version of this paper using 
MEX. 

• afs-bench. A script of file system intensive pro- 
grams such as copy, compile and search that 
execute out of the Andrew File System [Satya- 
naranyanyan et al. 85]. 

• parthenon-n. A resolution-based theorem prover 
that uses n threads to exploit or-parallelism [Dose 
et al. 89]. 

• procon-64. A producer-consumer application in 
which one consumer thread coordinates with one 
producer thread to read data from a large file into 
a 64 byte buffer. 

Table 3 shows the behavior of the applications when 
run under two different versions of the operating sys- 
tem. The columns labeled "Emul" reflect runs using 
kernel emulation for the application and for Mach's 
user-level Unix server. The columns labeled "R.A.S." 
reflect runs using restartable atomic sequences for the 
applications and for the Unix server. Each program 
was run several times and the average values for mea- 
surements taken during the runs are given in the table. 

Restartable atomic sequences have the greatest ef- 
fect on applications that use threads explicitly, such as 
Parthenon with 1 or 10 threads, and procon-64 which 



Program Elapsed Emulation Restarts Thread 
Time (sees) Traps Suspensions 

Emul. R.A.S. Emul.     R.A.S. 
text-format 1Ö.1 9.8 57305 0 295          317 
afs-bench 239.4 231.1 2191276 42 8856       9876 
Parthenon-1 25.8 18.5 1395534 4 412          354 
Parthenon-10 26.1 18.6 1576714 7 610         499 
procon-64 30.4 15.7 2738168 4 106969     91494 

Table 3: Effect of synchronization overhead on application performance. 

improve by about 30% and 50% respectively. Single- 
threaded "vanilla Unix" applications also benefit in- 
directly through the improved performance of multi- 
threaded user-level operating system services. For ex- 
ample, the performance of the text-formatter and the 
file system benchmarks, which are themselves single 
threaded but rely on the multithreaded Unix server, 
improves by about 3%. 

The column labeled "Emulation Traps" reflects the 
number of synchronizations that occurred when atomic 
operations were implemented in the kernel. The col- 
umn labeled "Restarts" shows the average number of 
atomic sequence restarts that had to be performed 
when Test-And-Set was implemented with explicit reg- 
istration. The restart count demonstrates that the like- 
lihood of a thread being suspended during a restartable 
atomic sequence is extremely small. 

The last two columns show the number of times that 
the kernel suspended a thread. For restartable atomic 
sequences, it indicates how many times a thread's ex- 
ecution state had to be checked to ensure that atomic 
operations eventually execute atomically. Comparing 
this column to the number of emulation faults justifies 
the small amount of extra work required by the restart 
strategies whenever a thread is rescheduled. The more 
compelling justification, of course, is the reduced exe- 
cution time for the applications. 

The number of emulation traps can be used 
to account for the performance difference between 
the two versions of the system. For example, 
parihenon-10, with its 1.57 million kernel emulations, 
should improve by about 1.57 million x 3.7 /zsecs 
(4.3 /isecs-.58 /isecs), or about 5.8 seconds. The actual 
improvement is slightly greater than this for two rea- 
sons. First, the correlation between elapsed time and 
number of emulation traps is neither strictly negative 
nor strictly positive. Hence, the number of emulation 
traps is only a good, but not exact, predictor of per- 
formance improvement. Second, some of the improve- 
ment is due to the reduction in scheduling overhead 
that comes with a decrease in critical section service 
time. 

For even very short critical sections (10 to 20 in- 
structions) restartable atomic sequences add little ex- 
tra overhead, and much of that overhead comes before 
the critical section has actually been entered. Conse- 
quently, a short critical section remains short, and the 
likelihood of the critical section itself being suspended is 

small. With kernel emulation, though, each Test-And- 
Set takes about 100 instructions, and nearly all are ex- 
ecuted with processor interrupts disabled. When con- 
trol returns out of the kernel, interrupts are reenabled 
and any pending interrupts are delivered. If the de- 
livered interrupt causes a preemption, then the thread 
that just performed the atomic operation will be de- 
scheduled and another thread will run. If that thread 
attempts to enter the same critical section, it will find 
the Tesi-And-Set variable already set and will relin- 
quish its processor to the scheduler. 

We looked more closely at parthenon-lO to determine 
the influence of inflated critical sections on program 
behavior. The program synchronizes often, but most 
synchronization operations guard short critical sections 
that simply increment a counter, or dequeue an item 
from a linked list. In running the program, we counted 
the number of times that a thread was unable to en- 
ter a critical section because of a lock held by another 
(suspended) thread. When using kernel emulation in 
Parthenon-10, a thread found a Test-And-Set lock held 
about twice as often as with restartable atomic se- 
quences. 

6    Software vs.    hardware sup- 
port for mutual exclusion 

The lack of hardware support for atomic operations of- 
fered the initial motivation to investigate efficient soft- 
ware solutions [Anderson et al. 91]. Most processors, 
however, do support some type of atomic read-modify- 
write instruction. In this section we evaluate the use of 
restartable atomic sequences on such processors. 

We measured the overhead to acquire and release 
a Test-And-Set lock using memory-interlocked instruc- 
tions and restartable atomic sequences on eight proces- 
sor architectures. The results are shown in Table 4. 
For the interlocked cases, the times do not include any 
linkage overhead, as the Test-And-Set and subsequent 
release instructions can be executed inline. In the cases 
of explicit registration, linkage overhead is included for 
the Test-And-Set, but not for the release, which can 
be inlined. The fourth column of Table 4 shows the 
call linkage overhead. Even with the linkage overhead, 
restartable atomic sequences are more efficient than 
memory-interlocked instructions on the DEC CVAX, 



Interlocked Explicit linkage Designated 
Processor Instruction Registration Overhead Sequence 

(fisecs) (/isecs) (/isecs) (/isecs) 
DEC CVAX 2.8 2.2 .6 1.6 
Motorola 68030 1.1 2.0 .8 1.2 
Intel 386 1.0 1.6 .7 .9 
Intel 486 .7 .6 .3 .3 
Intel 860 .3 .4 .2 .2 
Motorola 88000 .9 .3 .1 .2 
Sun SPARC .8 1.0 .3 .7 
HP 9000 Series 700 .94 .17 .08 .09 

Table 4: Hardware and software overheads of Test-And-Sei using different implementation strategies. 

the Intel 486, the Motorol- MO, and the Hewlett 
Packard 9000 (PA-RISC) Sen .. 700. 

Using designated sequences, the software approach 
outperforms the hardware in all cases (subtract the 
overhead of linkage from that of an explicitly registered 
sequence). As processor speeds increase relative to bus 
and memory speeds, we expect the optimistic software 
solution to continue its dominance. For interlocked in- 
structions to outperform optimistic software techniques 
on uniprocessors, they must be implemented so that 
they exploit the simpler single processor case. 

The table demonstrates that one should not neces- 
sarily rely on an architecture and memory system to 
provide functions that may be provided more cheaply 
with a combination of operating system, compiler, and 
runtime support. 

gins a mulH-instruction atomic sequence -with a special 
instruction that sets a bit in the processor status word, 
disables interrupts, and locks the bus. The bit is cleared 
and the bus lock is automatically released on the next 
write to memory, after 32 cycles, or on a processor ex- 
ception. The release on write covers the common case 
of a successful read-modify-write sequence. The kernel 
must check the bit on every transfer from the kernel 
to user level. If the bit is set, the kernel must back 
the thread up to the special instruction. Despite the 
i860's hardware support for restartable sequences (the 
bit in the processor status word eliminates the need 
to perform explicit registration or instruction stream 
inspection after every context switch), it offers little 
performance advantage over software techniques on a 
uniprocessor (see Table 4). 

7    Related work 
The Trellis/Owl object-oriented language [Moss & 
Köhler 87] used optimistic synchronization techniques 
similar to those described in this paper. The Owl 
runtime system provided concurrency among several 
threads sharing a single VMS process, and used soft- 
ware interrupts from VMS to drive its multiplexing. It 
provided atomicity for its own needs and those of user 
programs by backing out of certain registered runtime 
routines, and by emulating forward through designated 
sequences. The most important difference between Owl 
and the work described in this paper is our integration 
of restartable atomic sequences with the operating sys- 
tem kernel. 

User-level detection and restart is similar to the ap- 
proach taken in [Anderson et al. 92] to support user- 
level thread management on shared memory multipro- 
cessors. In that system, when a thread is preempted 
inside a critical section, it is immediately resumed not 
where it left off, but within code that gives the thread 
management system the opportunity to recover from 
the preemption. This machinery is sufficient for imple- 
menting restartable atomic sequences on a, uniproces- 
sor. 

The Intel i860 processor [Intel860 89] provides hard- 
ware support for restartable sequences.  A thread be- 

8    Conclusions 

Restartable atomic sequences represent a "common 
case" approach to mutual exclusioi on a uniprocessor. 
In the common case, ai atomic operation tuns unin- 
terrupted. The uncofTimor- case can be detect d after 
it occurs and can be handled by means of a simple re- 
covery process. As such, restartable atonii" sequences 
are appropriate for uniprocessors that do not support 
memory-interlocked atomic instructions. Moreover, on 
processors that do have hardware support for syn- 
chronization, better performance may be possible with 
restartable atomic sequences. 
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